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Abstract

In this work, we carry out a systematic analysis of forced oscillation in planar diffusion flames under weak external forcing. The exter-
nal forcing is introduced by independently imposing a flow field with small amplitude fluctuations. Employing the asymptotic theory of
Cheatham and Matalon, the linear response is first examined. It is shown that when the Damköhler number Da is close to the critical
value Da* corresponding to the marginal state of diffusive–thermal pulsating instability, the imposed velocity fluctuation may induce very
large amplitude of flame oscillation as the frequency of velocity fluctuation c approaches c0, the flame oscillation frequency at the onset of
instability. This is a resonance phenomenon between the imposed flow oscillations and the intrinsic flame oscillations that are driven by
the diffusive–thermal instability, and hence we refer to this as the diffusive–thermal resonance. The nonlinear near-resonant response is
then examined with the Damköhler number Da chosen to be very close to the critical Damköhler number Da*, and we derive an
evolution equation for the amplitude of forced oscillation. Examination of the evolution equation reveals that in most situations, flames
with larger Lewis number of fuel, smaller initial mixture strength, and smaller temperature difference between the oxidant and fuel stream
are more responsive to the external forcing.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Flames in practical combustors are subjected to fluctuat-
ing flows imposed by the random motion of eddies whose
wide spectrum of length and time scales may interact with
the flames in very different ways. Since a direct study of the
flame response to flow unsteadiness in turbulent combus-
tion is rather complicated, the effect of flow unsteadiness
on laminar flames has received considerable attention for
its potential application to the fundamental understanding
and modeling of turbulent combustion through the concept
of laminar flamelets [1].

Unsteady effects on both diffusion and premixed flames
have been studied with emphasis on the dynamic response
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to oscillatory strain rate variations. In particular, results on
diffusion flames [2–14] show that the flame response
becomes more sensitive to the imposed unsteadiness when
the otherwise steady flame is near its extinction limit;
whereas the response for flames far from extinction is
attenuated monotonically as the frequency of the imposed
oscillation increases. Consequently, unsteady flames can
withstand higher strain rates at higher frequencies than at
lower frequencies. However, there have been relatively
few previous theoretical investigations. Strahle [2] studied
the convective droplet burning at a stagnation point under
the influence of small amplitude sound wave from the free
stream. Im et al. [13,14] analyzed the response of counter-
flow diffusion flames to monochromatic oscillatory strain
rates using large activation energy asymptotics, with atten-
tion focused on near extinction conditions so that the time
scale of the imposed unsteadiness is comparable to that of
diffusive transport. The results of Im et al. [13] suggest that
the unsteady characteristics of the near-extinction diffusion
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Nomenclature

A amplitude function
c0 frequency at the onset of intrinsic oscillation
Da Damköhler number
Da* Damköhler number at the onset of instability
h�j excess/deficiency enthalpy for species j, j = F, O

Lej Lewis number of species j, j = F, O

R modulus of amplitude function A

Sj leakage function for species j, j = F, O

t fast time
T temperature
u response of temperature to external forcing
v response of fuel mass fraction to external

forcing
w response of oxidant mass fraction to external

forcing
xf location of flame surface
YF fuel mass fraction
YO oxidant mass fraction

Greek symbols

b Zeldovich number
d reduced Damköhler number

/ initial mixture strength
c heat transfer parameter
h polar angle of amplitude function A

s1, s2 slow time variables
nf location of stoichiometric flame surface

kJ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2

J þ 4iLeJ c
q

; J ¼ T ; F ;O

kJ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2

J þ 4iLeJ c0

q
; J ¼ T ; F ;O

lJ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2

J þ 8iLeJ c0

q
; J ¼ T ; F ;O

Subscripts and superscripts

b basic state quantity
p particular solution to the flame responses
F fuel
O oxidant
�1 fuel boundary
1 oxidant boundary
+ oxidant side of flame sheet
� fuel side of flame sheet
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flame can be significantly different from those in the Burke–
Schumann limit.

These earlier studies, however, have not addressed the
important issue of resonance. That is, combustion systems
may exhibit intrinsic oscillation of different modes and
those oscillations may then interact with the imposed flow
oscillations so that the flame responses could be signifi-
cantly different. For example, recent studies have shown
that, when the Lewis numbers of the reactants are suffi-
ciently larger than unity, intrinsic oscillations due to the
imbalance of thermal and mass diffusions, referred to as
the thermal–diffusive pulsating instability, may develop
near but prior to extinction, leading eventually to flame
quenching [15–18]. Thus, such unstable diffusion flames
could extinguish at a larger Damköhler number, denoted
as the dynamic extinction Damköhler number, Da*, than
the static extinction Damköhler number, Daext.

The primary objective of the present study is therefore
to analyze the flame response to external forcing coupled
with intrinsic flame oscillations. Specifically, we consider
the simple geometric configuration of a planar diffusion
flame situated in a channel at the interface between a fuel
being supplied from below with a velocity field with har-
monic fluctuation of small amplitude, and an oxidant dif-
fusing in from a cross-stream above. This configuration
eliminates the effect of strain rate so that the flame is only
subjected to the unsteadiness of the velocity field. Intrinsic
oscillation of the planar diffusion flame due to thermal–dif-
fusive instability is considered. The Lewis numbers for
both the fuel and oxidant are assumed to be larger than
unity and focus our attention on the flame response near
the dynamic extinction limit, Da*, instead of the static
extinction limit, Daext, considered in previous studies. We
carry out a systematic analysis on the linear and nonlinear
response of the flame oscillation subjected to small ampli-
tude, harmonic velocity fluctuation by employing the
asymptotic theory of Cheatham and Matalon [19]. The lin-
ear response shows that the resonance phenomena may
occur as the frequency of velocity fluctuation approaches
the intrinsic oscillation frequency when the flame is near
the stability boundary. The nonlinear near-resonant
response is then analyzed by deriving an evolution equa-
tion for the amplitude of forced oscillation. The Damköh-
ler number Da and forced frequency c are chosen to be
close to Da* and the intrinsic oscillation frequency, c0, so
that even very weak forcing is able to induce rather large
oscillation amplitude. It is shown that by considering the
inherent nonlinearity, the flame oscillation exhibits finite
amplitude at the resonant condition.

2. Formulation

We consider the simple configuration of a planar flame in
a chamber [18,19]. As shown in Fig. 1, the fuel stream is fed
from the bottom of the chamber and the oxidant diffuses
against the fuel stream from a fast cross-stream at the top
of the chamber. We employ the asymptotic theory of Chea-
tham and Matalon [19] in which the convective–diffusive
equations for temperature and fuel and oxidant mass
fractions are solved on either side of the flame surface, xf.
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Fig. 1. The one-dimensional chambered flame configuration.
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Fig. 2. Amplitude of uþp versus forced frequency c for different values of
Da (with LeF = 2, LeO = 2, / = 1 and DT = 0).
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These quantities are then related across the flame using the
jump relations obtained by asymptotic analysis of the reac-
tion zone. Assuming constant physical and chemical prop-
erties of reactants, constant density, and one-step
irreversible chemical reaction, the appropriate non-dimen-
sional governing equations can be written as [19]:

oT
ot
þ U

oT
ox
� o2T

ox2
¼ 0; ð1Þ

oY F

ot
þ U

oY F

ox
� 1

LeF

o2Y F

ox2
¼ 0; ð2Þ

oY O

ot
þ U

oY O

ox
� 1

LeO

o2Y O

ox2
¼ 0; ð3Þ

where T is the temperature, YF and YO the mass fractions
of the fuel and oxidant, respectively, and LeF and LeO their
corresponding Lewis numbers. The unsteadiness is intro-
duced by independently imposing harmonic velocity fluctu-
ation of small amplitude onto the unity mean velocity field.
Thus, the velocity U is expressed as:

U ¼ 1þ b�1eHðtÞ;
HðtÞ ¼ h expðictÞ þ c:c:;

ð4Þ

where b is the Zel’dovich number, e a small parameter sat-
isfying b�1� e� 1, h the amplitude of velocity fluctua-
tion, c the forced frequency and c.c. denotes the complex
conjugate.

The boundary conditions are:

T ¼ T�1; Y F ¼ 1; Y O ¼ 0 as x! �1; ð5Þ
T ¼ T�1 þ DT ; Y F ¼ 0; Y O ¼ /�1 at x ¼ 0; ð6Þ

where DT is the temperature difference between the oxidant
and fuel stream, and / is the initial mixture strength, de-
fined as the ratio of the fuel mass fraction at the fuel
boundary to the oxidant mass fraction at the oxidant
boundary, normalized by the mass-weighted stoichiometric
coefficient ratio.

The jump relations at the reaction sheet location, xf, are
[19]:

½T � ¼ ½Y F� ¼ ½Y O� ¼ 0; ð7Þ
oT
ox

� �
¼ � 1

LeF

oY F

ox

� �
¼ � 1

LeO

oY O

ox

� �
: ð8Þ

Here we have adopted the notation [T] = T+(xf) � T�(xf)
and the superscripts ‘‘+/�” denote the solutions at the oxi-
dant/fuel sides of the reaction sheet. Expressions for the
amount of leakage of the reactants through the reaction
sheet are given as [19]:

Y þF jx¼xf
¼ b�1LeFSFðc; dÞ; ð9Þ

Y �Ojx¼xf
¼ b�1LeOSOðc; dÞ; ð10Þ

where the approximate formulas for the quantities SF and
SO have been determined through curve fitting and are gi-
ven in Refs. [18,19]. They depend only on two parameters c
and d, where

c ¼ � oT�

ox

����
xf

þ oTþ

ox

����
xf

 !,
oT�

ox

����
xf

� oTþ

ox

����
xf

 !
ð11Þ

represents the excess of heat conducted away to one side of
the reaction sheet from the total heat generated by the
chemical reaction, and

d ¼ 4LeFLeODa
oT
ox

� ��2

exp
1þ c

2
h�O þ

1� c
2

h�F

� �
ð12Þ

is the reduced Damköhler number, which measures the
intensity of the chemical reaction, and

h�F ¼ Tþ1 þ
1

LeF

Y þF;1; h�O ¼ T�1 þ
1

LeO

Y �O;1

are the excess/deficiency in the fuel and oxidant enthalpies,
respectively, evaluated at the reaction sheet. Furthermore,
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subscript ‘‘1” denotes the O(b�1) expression in a power ser-
ies expansion in terms of b�1.

SF and SO only have solutions when d P dc, and for
each d > dc there exist two distinct solutions characterized
by different extents of reactant leakage (see, for example,
Fig. 2 in Ref. [18]). The critical value dc depends only on
c and was determined by Liñán [20] as:

dc ¼ e ð1� cj jÞ� ð1� cj jÞ2þ 0:26ð1� cj jÞ3þ 0:055ð1� cj jÞ4
n o

:

3. Linear response

A linear analysis is first conducted by assuming h = 1
such that the velocity fluctuation is of O(b�1e) relative to
its mean value, as shown in Eq. (4). The solution under a
harmonic fluctuating velocity field (4) can be written in
the form of steady-state base solutions for temperature,
mass fractions of fuel and oxidant, and the flame sheet
location under unity flow field plus a correction term
accounting for the small velocity fluctuation:

T ¼ T bðxÞ þ b�1euðx; tÞ ð13Þ
Y F ¼ Y F;bðxÞ þ b�1evðx; tÞ ð14Þ
Y O ¼ Y O;bðxÞ þ b�1ewðx; tÞ ð15Þ
xf ¼ xf ;b þ b�1elðx; tÞ ð16Þ

where u, v, w, and l are the correction terms for tempera-
ture, mass fractions of fuel and oxidant, and flame sheet
location, respectively, and the base solutions Tb, YF,b,
YO,b, and xf,b are respectively given by [19]:

T b ¼

T�1 þ ðe�nf þ DT � 1Þex

þ 1
b

LeF

LeO

ð1�eLeOnf Þ�LeOð1�enf Þ
1�eLeFnf

� SO

SF

n o
SFex�nf ; x < xf

T�1 þ 1þ ðDT � 1Þex

� 1
b

1�ex

1�eLeFnf

n o
LeFSF; x > xf ;

8>>>>><
>>>>>:

Y F;b ¼

1� eLeFðx�nf Þ

þ 1
b 1� LeF

LeO

1�eLeOnf

1�eLeFnf
þ SO

SF

n o
LeFSFeLeFðx�nf Þ; x < xf

1
b

1�eLeFx

1�eLeFnf

n o
LeFSF; x > xf ;

8>>><
>>>:

Y O;b ¼
1
b LeOSOeLeOðx�nf Þ; x < xf

ð1þ /�1ÞeLeOx � 1þ 1
b

1�eLeOx

1�eLeFnf

n o
LeFSF; x > xf ;

8<
:

xf ;b ¼ nf þ
1

b
SO �

LeF

LeO

1� eLeOnf

1� eLeFnf
SF

� �
;

where nf corresponds to the flame surface in the Burke–
Schumann limit and is given by:

nf ¼ �Le�1
O lnð1þ /�1Þ:

We note that the unsteady fluctuations induced by the
perturbed flow field (4) are of O(b1e). The magnitude of
these terms is sufficient to elicit an O(1) response due to
the extreme sensitivity of the Arrhenius reaction rate term.
Substituting Eqs. (13)–(16) into the governing Eqs. (1)–(3)
for T, YF and YO and their boundary conditions, jump and
leakage conditions (5)–(10) yields the governing equations
for u, v and w:

ut þ ux � uxx ¼ �eðT 0Þx expðictÞ þ c:c:; ð17Þ
vt þ vx � Le�1

F vxx ¼ �eðY F ;0Þx expðictÞ þ c:c:; ð18Þ
wt þ wx � Le�1

O wxx ¼ �eðY O;0Þx expðictÞ þ c:c:; ð19Þ

and their boundary conditions

u ¼ v ¼ w ¼ 0 at x ¼ 0 and as x! �1; ð20Þ
jump relations

½u� ¼ �Le�1
F ½v� ¼ �Le�1

O ½w�; ð21Þ

u� ou
ox

� �
¼ � v� Le�1

F

ov
ox

� �
¼ � w� Le�1

O

ow
ox

� �
; ð22Þ

and leakage conditions

eLe�1
F vþ ¼

X1
k¼1

1

k!

okSFðc; dbÞ
odk

b

ðd� dbÞk; ð23Þ

eLe�1
O w� ¼

X1
k¼1

1

k!

o
kSOðc; dbÞ

odk
b

ðd� dbÞk; ð24Þ

where T0, YF,0 and YO,0 are the leading-order base solu-
tions in terms of b�1, db is the reduced Damköhler number
evaluated at the steady-state condition and the subscript
‘‘x” denotes differentiation with respect to x. Eqs. (17)–
(19) imply that the flame oscillates under the external har-
monic driving force due to the velocity fluctuation.

The solutions to u, v and w assume the form

/ðx; tÞ ¼ /pðxÞ expðictÞ þ c:c:þ /cðxÞ expðrtÞ;
/ ¼ u; v;w;

where the particular solution /p(x)exp(ict) + c.c. accounts
for the response to the velocity fluctuation and the com-
mon solution /c(x)exp(rt) is associated with the intrinsic
instability. r is a complex number whose real part identifies
the growth rate. The Damköhler number Da of interest
here is larger than its critical value Da* corresponding to
the marginal state of intrinsic instability. Thus, the flame
is intrinsically stable so that the common solution
/c(x)exp(rt) will damp out eventually, and hereafter, only
the particular solution /p(x)exp(ict) + c.c. is considered. It
should be noted that up(x), vp(x) and wp(x) are complex
functions whose modulus denote the oscillation amplitude
while the phase angle denotes the phase shift of oscillation
from the imposed velocity fluctuation. The solutions to
up(x), vp(x) and wp(x) are

upðxÞ¼
B1 exp½ð1=2þKT Þx�þ i

cðe�nf þDT �1Þex; x< xf

B2fexp½ð1=2þKT Þx�� exp½ð1=2�KT Þx�g
þ i

cðDT �1Þfex� exp½ð1=2�KT Þx�g; x> xf ;

8><
>:

vpðxÞ¼
C1 exp½ðLeF=2þKFÞx�� i

cLeFeLeFðx�nf Þ; x< xf

C2fexp½ðLeF=2þKFÞx�� exp½ðLeF=2�KFÞx�g; x> xf ;

(
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wpðxÞ¼
D1 exp½ðLeO=2þKOÞx�; x< xf

D2fexp½ðLeO=2þKOÞx�� exp½ðLeO=2�KOÞx�g
þ i

cð1þ/�1ÞLeOfeLeOx� exp½ðLeO=2�KOÞx�g; x> xf ;

8><
>:

where

KJ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2

J þ 4iLeJ c
q

; J ¼ T ; F ;O

with LeT = 1. The constants B1;B2;C1;C2;D1 and D2 are
obtained by applying the jump and leakage conditions
(21)–(24), which yield the inhomogeneous linear system

1 �1 Le�1
F �Le�1

F 0 0

1 �1 0 0 Le�1
O �Le�1

O

F T
1
2
�KT F F

1
2
�Le�1

F KF 0 0

F T
1
2
�KT 0 0 F O

1
2
�Le�1

O KO

1�c
2

LeFbF
1þc

2
LeFbF

1�c
2

bF�1 0 0 1þc
2

LeF

LeO
bF

1�c
2

LeObO
1þc

2
LeObO

1�c
2

LeO

LeF
bO 0 0 1þc

2
bO�1

2
66666666664

3
77777777775

�

uþp
u�p
vþp
v�p
wþp
w�p

2
6666666664

3
7777777775
¼ i

c

0

0

q3

q4

0

0

2
6666666664

3
7777777775
; ð25Þ

where

F J ¼ �
1

2
þ Le�1

J KJ cothðKJ nfÞ; J ¼ T ; F ;O;

q3 ¼ ð1=2� KT Þ½1þ ðDT � 1Þenf � � ðDT � 1Þenf

� ½1=2� KT cothðKT nfÞ�
� ðDT � 1ÞKT ½1þ cothðKT nfÞ�
� exp½ð1=2� KT Þnf � � ð1=2� Le�1

F KFÞLeF;

q4 ¼ ð1=2� KT Þ½1þ ðDT � 1Þenf � � ðDT � 1Þenf ½1=2� KT cothðKT nf Þ�
� ðDT � 1ÞKT ½1þ cothðKT nfÞ� exp½ð1=2� KT Þnf �
� ð1þ /�1ÞLeO½1=2� Le�1

O KO cothðKOnf Þ�eLeOnf

� ð1þ /�1ÞlO½1þ cothðlOnfÞ� exp½ðLeO=2� lOÞnf �;

and uþp ; u
�
p ; v

þ
p ; v

�
p ;w

þ
p and w�p are the values of up; vp and wp

at the oxidant and fuel sides of the flame sheet, respectively.
The coefficient matrix in (25) depends on the four pre-
scribed parameters LeF; LeO;/ and DT defining the
combustion system, the imposed frequency c, and the
Damköhler number Da. The amplitude and phase shift of
forced oscillations for T ; Y F and YO at both sides of the
flame sheet can be obtained from uþp ; u

�
p ; v

þ
p ; v

�
p ;w

þ
p and

w�p by solving Eq. (25). However, under certain Damköhler
numbers and forced frequencies, the determinant of the
coefficient matrix in Eq. (25) could be zero, leading to infi-
nitely large values of uþp ; u

�
p ; v

þ
p ; v

�
p ;w

þ
p and w�p , i.e. infinitely

large amplitude of flame oscillations even under an O(e)
weak forcing. This implies that resonance occurs under
such an external forcing. The linear stability analysis per-
formed by Kukuck and Matalon [18] for the intrinsic oscil-
lation of the same flame yields a homogeneous linear
system with the same coefficient matrix. The solvability
condition, vanishing of the determinant of the coefficient
matrix, produced the critical frequency and Damköhler
number, c0 and Da*, corresponding to the marginally stable
state. Thus, the imposed frequency and Damköhler num-
ber at resonance are identical to those at the onset of intrin-
sic oscillation, and hence the resonance occurs between the
external forcing and intrinsic oscillation of the flame. Con-
sequently, two conditions are required for the resonance of
diffusion flame to occur: the flame is close to the stability
boundary, i.e., Da ? Da*, and the imposed frequency c ap-
proaches the critical frequency c0.

The inhomogeneous system (25) gives the dependence of
the amplitude and phase shifts of forced oscillation on the
imposed frequency c and the Damköhler number Da.
Fig. 2 shows the amplitude of uþp versus the imposed fre-
quency c for different values of Da. It is seen that when
the flame is at the instability boundary, i.e. Da = Da*, the
imposed velocity fluctuation induces infinitely large flame
oscillations, i.e. resonance, as c approaches c0. For Da

sufficiently larger than Da*, the oscillation amplitude
decreases monotonically with increasing c, while for Da
close enough to Da*, the oscillation amplitude peaks at
the frequency close to but smaller than the natural fre-
quency c0. This differs from previous investigations that
predicted only the monotonic attenuation of forced oscilla-
tion with the increase of the imposed frequency. Now we
know that this monotonic dependence holds only when
the flame is sufficiently away from the unstable state so that
the resonance between the external forcing and intrinsic
oscillation of flame does not occur. Fig. 3 shows variations
of the phase shifts of uþp ; u

�
p ; v

þ
p ; v

�
p ;w

þ
p and w�p with the

Damköhler number Da for c = c0. It is seen that the oscil-
lation of reactant leakages vþp and w�p are always in phase.
As Da approaches Da*, i.e. the flame approaches the reso-
nance condition, temperature oscillations on both sides of
the flame sheet, uþp and u�p , become in phase and the oscil-
lations of the mass fractions of fuel and oxidant on both
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sides of the flame sheet, vþp ; v
�
p ;w

þ
p and w�p , become in phase

as well. The phase difference between the oscillations of
temperature, uþp and u�p , and mass fractions, vþp ; v

�
p ;w

þ
p

and w�p , is p when the flame is at resonance, indicating they
are out of phase. This is because higher flame temperatures
lead to less reactant leakages, and vice versa.

4. Nonlinear response

The preceding analysis predicts infinite oscillation
amplitude at the resonant frequency. However, the ampli-
tude is expected to be limited by the inherent nonlinearities
in the problem. Here we derive an evolution equation for
the amplitude of forced oscillation near resonance. We
adopt the scalings:

h ¼ e2;

ðDa� Da�Þ=Da� ¼ e2;

ðc� c0Þ=c0 ¼ xe2;

ð26Þ

so that the flame oscillation exhibits a weakly nonlinear
characteristic and a long time transient behavior. Thus
we introduce the ‘‘slow time” variables

s1 ¼ et; s2 ¼ e2t;

associated with the long time transient behavior. The veloc-
ity fluctuation H(t) can be rewritten as

HðtÞ ¼ e3 expðic0sÞ þ c:c:;

where s = t + xs2.
We expand the variables up; vp and wp in a power series

in e,

ðup; vp;wpÞ ¼
X1
m¼0

ðum; vm;wmÞem;

and expand the governing equations, boundary, jump
and leakage conditions for u, v and w (17)–(24) in terms
of e. We obtain a system of equations to be solved at each
order:

L

um

vm

wm

0
B@

1
CA ¼

o2um
ox2 � oum

ox �
oum
ot

o2vm
ox2 � LeF

ovm
ox � LeF

ovm
ot

o2wm
ox2 � LeO

owm
ox � LeO

owm
ot

0
BB@

1
CCA ¼

pm

qm

rm

0
B@

1
CA; ð27Þ

with the boundary conditions:

um ¼ vm ¼ wm ¼ 0 at x ¼ 0 and as x! �1; ð28Þ

jump conditions:

½um� ¼ �Le�1
F ½vm� ¼ �Le�1

O ½wm�; ð29Þ

um �
oum

ox

� �
¼ � vm � Le�1

F

ovm

ox

� �
¼ � wm � Le�1

O

owm

ox

� �
;

ð30Þ
and leakage conditions:

1� c
2

LeFbF

� �
uþm þ

1þ c
2

LeFbF

� �
u�m

þ 1� c
2

bF � 1

� �
vþm þ

1þ c
2

LeFbF

LeO

� �
w�m ¼ aFm; ð31Þ

1� c
2

LeObO

� �
uþm þ

1þ c
2

LeObO

� �
u�m

þ 1� c
2

LeObO

LeF

� �
vþm þ

1þ c
2

bO � 1

� �
w�m ¼ aOm; ð32Þ

where m ¼ 0; 1; 2; . . . and

bj ¼ d�b
oSjðc; d�bÞ

odb

; j ¼ F ;O;

with d�b being the critical reduced Damköhler number at the
marginally stable state. Note that the only non-linearity
arises in the leakage conditions (31) and (32) from the non-
linear chemical kinetics.

At leading order m = 0, p0 = q0 = r0 = aF0 = aO0 = 0,
and we recover the homogeneous linear problem, such that
the solutions are given as

ðu0; v0;w0Þ ¼
Aðs1; s2ÞU�J ðxÞ expðic0sÞ þ c:c:; x < xf ;

Aðs1; s2ÞUþJ ðxÞ expðic0sÞ þ c:c:; x > xf ;

�
ð33Þ

where J ¼ T ; F ;O corresponds to the solutions of u0; v0 and
w0, respectively, and

U�J ðxÞ ¼ C�J exp½ðLeJ=2þ kJ Þx�;
UþJ ðxÞ ¼ CþJ fexp½ðLeJ=2þ kJÞx� � exp½ðLeJ=2� kJ Þx�g;

kJ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2

J þ 4iLeJ c0

q
:

The constants C�J are determined by the linear system (A1)
given in the appendix of Ref. [21], derived from relating the
solutions of u0; v0 and w0 through the jump and leakage
conditions. The amplitude function Aðs1; s2Þ, which is a
function of the slow time variables, s1 and s2, is determined
by going to higher orders in our scheme. This procedure is
the same as that in Ref. [21] and hence will not be repeated
here. At each order, solutions exist only if appropriate solv-
ability conditions are satisfied. The solvability condition
for u1, v1 and w1 yields oA/os1 = 0. Thus, the amplitude
function A is actually only a function of the slow time var-
iable s2.

At O(e2), the inhomogeneous terms in Eqs. (27),(31) and
(32) are:

p2 ¼ ðA0 þ ic0xAÞ/T þ ðT 0Þx;

q2 ¼ LeFðA0 þ ic0xAÞ/F þ ðY F ;0Þx;

r2 ¼ LeOðA0 þ ic0xAÞ/Oþ ðY O;0Þx;

aj2 ¼ aj2;3A3 expð3ic0tÞ þ ðaj2;2A Aj j2þ aj2;1AÞ expðic0tÞ þ c:c:;
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where the prime of A denotes differentiation with respect to
s2,

aj2;1¼ sbj1F ðUÞ;
aj2;2¼ bj1ðF ðUÞF ðXÞþF ðUÞF ðHÞÞþbj2F ðUÞ F ðUÞj j2;

aj2;3¼ bj1F ðUÞF ðHÞþ1

3
bj2F 3ðUÞ;

s¼ s0

1� 1�c
2
�LeF

1�enf

1�eLeFnf
þ 1þc

2
LeF

LeO

1�eLeOnf

1�eLeFnf

	 

bF

;

bj1¼�Lej d�b
oSjðc;d�bÞ

odb

þd�2b

o
2Sjðc;d�bÞ

od2
b

( )
;

bj2¼�Lej
d�b
2

oSjðc;d�bÞ
odb

þ3d�2b

2

o2Sjðc;d�bÞ
od2

b

þd�3b

2

o3Sjðc;d�bÞ
od3

b

( )
;

H�J ðxÞ¼D�J exp½ðLeJ=2þlJÞx�;
H�J ðxÞ¼D�J fexp½ðLeJ=2þlJ Þx�� exp½ðLeJ=2þlJ Þx�g;
X�J ðxÞ¼B�J eLeJ x;

XþJ ðxÞ¼BþJ ð1� eLeJ xÞ;

lJ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2

J þ8iLeJ c0

q
;

and the function F(U) is defined as

F ðUÞ ¼ 1þ c
2
fU�T ðnfÞ þ Le�1

O U�OðnfÞg

þ 1� c
2
fUþT ðnfÞ þ Le�1

F UþF ðnfÞg;

and the overbar designates the complex conjugate. The
constants B�J and D�J are determined by the linear systems
(A3) and (A4), respectively, given in the appendix of [21].
Applying the solvability condition at this order yields

A0 þ ðsa1 þ ic0xÞAþ a2AjAj2 þ a3 ¼ 0; ð34Þ
where the coefficients are given by

a1 ¼
a10

a0

; a2 ¼
a20

a0

; a3 ¼
a30

a0

;

a0 ¼
Z nf

�1
½W�T /�T þ LeFW�F /�F þ LeOW�O/�O�dx

þ
Z 0

nf

½WþT /þT þ LeFWþF /þF þ LeOWþO/þO�dx;

a10 ¼
1� c

2v
bF

LeObO

þ 1

� �
dWF

dx

� �
þ 1� c

2v
1

LeF

� �
dWO

dx

� �� �
aF2;1

þ 1þ c
2v

LeFbF

Le2
ObO

� �
dWF

dx

� �
� 1

v
1� c

2
bF � 1

� �
1

LeObO

dWO

dx

� �� �
aO2;1;

a20 ¼
1� c

2v
bF

LeObO

þ 1

� �
dWF

dx

� �
þ 1� c

2v
1

LeF

� �
dWO

dx

� �� �
aF2;2

þ 1þ c
2v

LeFbF

Le2
ObO

� �
dWF

dx

� �
� 1

v
1� c

2
bF � 1

� �
1

LeObO

dWO

dx

� �� �
aO2;2;

a30 ¼
Z nf

�1
½W�T ðT�0 Þx þ LeFW�F ðY �F;0Þx þ LeOW�OðY �O;0Þx�dx

þ
Z 0

nf

½WþT ðTþ0 Þx þ LeFWþF ðY þF;0Þx þ LeOWþOðY þO;0Þx�dx;

W�J ðxÞ ¼ E�J exp½ð�LeJ=2þ �kJ Þx�
WþJ ðxÞ ¼ EþJ fexp½ð�LeJ=2þ �kJ Þx� � exp½ð�LeJ=2� �kJ Þx�g;
and the constants E�J are determined by the linear system
(A2) given in the appendix of [21].

Note that the amplitude function A is complex and
hence includes the information of both amplitude and
phase. We construct solutions by first writing the ampli-
tude function A in the polar form and separating a1; a2,
and a3 into their real and imaginary parts:

A ¼ Rðs2Þ exp½ihðs2Þ�;
a1 ¼ a1r þ ia1i; a2 ¼ a2r þ ia2i; a3 ¼ a3r þ ia3i;

ð35Þ

where R is the amplitude and h the polar angle indicating
phase shift. The complex evolution Eq. (33) can now be ex-
pressed as two real equations, for the amplitude and the
phase shift:

R0 þ sa1rRþ a2rR3 þ a3r cos hþ a3i sin h ¼ 0; ð36Þ
Rh0 þ ðsa1i þ c0xÞRþ a2iR3 þ a3i cos h� a3r sin h ¼ 0: ð37Þ

We note that the evolution Eqs. (34) or (36) and (37) have a
similar form as those describing nonlinear oscillators, e.g.
the Van der Pol oscillator, under weak damping and forc-
ing [22]. A simple comparison of these systems shows that
the term sa1 in Eqs. (34) and (36), which quantifies the devi-
ation of Da from Da*, plays the role of damping for the
forced flame oscillation.

Here, we study the steady-state solutions of Eqs. (36)
and (37) in order to assess the final amplitude and phase
of the forced flame oscillation under external forcing. Com-
bining the steady-state forms of Eqs. (36) and (37) yields
the following cubic equation for R2.

R6 þ 2½sða1ra2r þ a1ia2iÞ þ c0xa2i�
ja2j2

R4

þ ðsa1rÞ2 þ ðsa1i þ c0xÞ2

ja2j2
R2 � ja3j3

ja2j2
¼ 0: ð38Þ

Eq. (38) will possess three real and positive solutions when-
ever the following inequality is satisfied:

a2i

a2r

����
���� P ffiffiffi

3
p

: ð39Þ

It has a single real solution otherwise. We now consider the
dependence of a2 on the four prescribed parameters,
LeF; LeO;/ and DT. In Fig. 4 we plot its variations with
each prescribed parameter to determine conditions (if
any) for which the inequality in (39) is satisfied, which
would indicate multiplicity of solutions. The green lines
in each figure show the transition boundary at which
ja2i=a2rj ¼

ffiffiffi
3
p

. As seen in Fig. 4, we have found that for
a wide range of realistic parameter values, all curves lie
to the left of the transition boundary, indicating that solu-
tions to (36) and (37) are single valued.

We now investigate the sensitivity of flames to the
imposed velocity fluctuations under different prescribed
parameters through this single-valued solution. Fig. 5
shows variation of the amplitude of forced oscillation, R,
with the normalized frequency x, defined in Eq. (26), for
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Da ¼ Da�;LeF ¼ 2; LeO ¼ 2;/ ¼ 1 and DT = 0. It is seen
that the dependence of R on the imposed frequency shows
similar behavior as those in Fig. 2 for Da slightly larger
than Da*, in that it peaks at the frequency close to but
slightly smaller than the intrinsic flame oscillation fre-
quency c0. The finite amplitude of forced oscillation at
the resonance condition, i.e. Da = Da* and c = c0, is due
to the nonlinear effects considered through the nonlinear
analysis. We hence can plot the dependence of this peak
amplitude, Rmax, on the system parameters such as LeF,
LeO, / and DT to examine at what conditions the flame
is able to achieve the largest Rmax and hence is most
responsive to the external forcing. Since the maximum
amplitude of forced oscillation is achieved under the small-
est damping, Rmax can be solved from Eq. (38) by setting
the damping effect s = 0, as Rmax = (a3/a2r)

1/3, which can
be derived to occur at the normalized frequency
x = � a2i (a3/a2r)

2/3. Thus, due to the nonlinearity, the
flame oscillates with the maximum amplitude at the im-
posed frequency not necessarily equal to the natural fre-
quency, c0. Whether the maximum amplitude, Rmax, occurs
at the frequency smaller or larger than c0 depends on the
sign of a2i, which in turn depends on the prescribed param-
eters. The peaking of the curves at c < c0 shown in Figs. 2
and 5 is due to the parameters we have used,
LeF ¼ 2; LeO ¼ 2;/ ¼ 1 and DT = 0 that yield a positive
a2i. Fig. 6 shows variations of Rmax with LeF for different
values of /. It is seen that except for / ¼ 1;Rmax increases
monotonically with LeF. In fact, Rmax peaks at a much lar-
ger LeF, e.g. LeF = 14.4 for / = 3, which is out of the range
of this plot. Since for most hydrocarbon–air diffusion
flames / > 1 and fuels with such large Lewis number are
rare, it can be considered that Rmax increases with LeF

monotonically. Thus, in general the flame is more sensitive
to the external forcing for larger LeF. Fig. 7 shows varia-
tions of Rmax with LeO for different values of /. It is seen
that for / > 1 most of the Rmax � LeO curves peak within
the range of 1 < LeO < 2, which is a more practical range
for the oxidant. Thus, flames with LeO falling in this range
are most responsive to the external forcing. Furthermore, it
is seen from Figs. 6 and 7 that except for smaller LeO where
Rmax is not sensitive to /, Rmax decreases with increasing /
over most of the parameter range for LeF and LeO. Fig. 8
shows the variations of Rmax with / for different values of
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DT. It is seen that Rmax decreases monotonically with
increasing / over most of its range except for larger DT

and small /, under which Rmax increases with increasing
/ over a very narrow range of /. Thus, flames with smaller
/, in general, are more responsive to the external forcing.
5. Conclusions

The response of flame oscillations to external velocity
fluctuations of small amplitude is examined. An analysis
on the linear response is first conducted and the results show
that when the flame is near the boundary of thermal–diffu-
sive pulsating instability, the velocity fluctuation may
induce resonance as the fluctuation frequency approaches
the natural frequency of the intrinsic oscillation. Thus, the
amplitude–frequency response curve exhibits a peak around
the natural frequency. Monotonic dependence of the oscil-
lation amplitude on the forced frequency holds only when
the flame is sufficiently away from resonance. A nonlinear
near-resonant response is then conducted to study the
effects of inherent nonlinearities on the response of flame
oscillation by deriving an evolution equation for the ampli-
tude of forced oscillation. Examination of the derived evo-
lution equation reveals that, in most situations, flames with
larger LeF, smaller / and DT, and 1 < LeO < 2 have the
largest oscillation amplitude at resonance. Thus, these
flames are most responsive to the external forcing.
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